Rings Over which All Modules are Strongly Gorenstein Projective

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Gorenstein projective , injective and flat modules

Let R be a ring and n a fixed positive integer, we investigate the properties of n-strongly Gorenstein projective, injective and flat modules. Using the homological theory , we prove that the tensor product of an n-strongly Gorenstein projective (flat) right R -module and projective (flat) left R-module is also n-strongly Gorenstein projective (flat). Let R be a coherent ring ,we prove that the...

متن کامل

A generalization of strongly Gorenstein projective modules

This paper generalize the idea of the authors in J. Pure Appl. Algebra 210 (2007) 437–445. Namely, we define and study a particular case of Gorenstein projective modules. We investigate some change of rings results for this new kind of modules. Examples over not necessarily Noetherian rings are given.

متن کامل

(n, m)-Strongly Gorenstein Projective Modules

This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short) for integers n ≥ 1 and m ≥ 0. We are mainly interested in studyi...

متن کامل

Periodic modules over Gorenstein local rings

It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...

متن کامل

The Gorenstein Projective Modules Are Precovering

The Gorenstein projective modules are proved to form a precovering class in the module category of a ring which has a dualizing complex. 0. Introduction This paper proves over a wide class of rings that the Gorenstein projective modules form a precovering class in the module category. Let me explain this statement. There are two terms of mystery, “Gorenstein projective modules” and “precovering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2010

ISSN: 0035-7596

DOI: 10.1216/rmj-2010-40-3-749